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NASA Technical Note D-316

By Murray Tobak and Henry C. Lessing
May 1960

The questions raised in this paper concerning the proper method of
writing aerodynamic forces and moments for combined motions have been
reconsidered. Analysis based on potential flow theory reveals that the
point of view taken in the first part of the report (pp. 7-10) and in the
concluding section (pp. 17, 18) is incorrect; the accepted method which
was disputed by the authors (pp. 6, 7) is in fact correct.

Consider the test case, steady circular motion, ¢ = constant,
N = constant. The argument contained in the report, wherein it is asser-
ted that aerodynamic acceleration terms should vanish for this motion, is
based implicitly on the incorrect assumption that the steady-state poten-
tial equation referred to rotating coordinates fixed in the body retains
the same form it has for steady flow in nonrotating coordinates. That
is, it was assumed that the differential equation for steady-state
perturbation potential in the body-fixed cylindrical coordinates x, r, u
is

-BEPxx + Prr + Pr/T + P, /7 = O

in which case there is no possibility for the existence of acceleration
forces and moments. Closer analysis shows, however, that the potential
equation becomes

’Bz¢xx + Pop + P/ + ¢up/r2 = -(2M?/V)¢¢x“

where ¢ 1is the angular velocity of the body-fixed coordinate system
about the axis of symmetry. The changed form of the potential equation
must be Interpreted as meaning that even though the flow appears steady
to an observer in the body-fixed coordinate system, he is still able to
discern that the body is turning. This fact invalidates the argument that
serodynamic acceleration terms are necessarily absent when the flow is
steady. For unsteady flow relative to body-fixed coordinates the
perturbation potential equation becomes
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The solution to this equation, subject to the appropriate boundary
conditions, has been obtained and confirms the form of the results in

current usage (egqs. (11) and (12)).

The section entitled "Magnus Forces" (pp. 10-12) remains correct
and the section entitled "Significance of New Formulation" (pp. 12-17)
can be made correct if the substitution

Cmpe, = Cmpy, = Cmg,

is made in equation (31) and thereafter.

ii
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NATIONAL AFRONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-316

STUDY OF THE AERODYNAMIC FORCES AND MOMENTS
ON BODIES OF REVOLUTION IN COMBINED
PITCHING AND YAWING MOTIONS

By Murray Tobak and Henry C. Lessing

SUMMARY

Significant errors are pointed out in the accepted practice of
writing the aerodynamic forces and moments that act on a body of revolution
during pitching and yawing motion. A more correct formulation is presented
which shows that, even with linear aerodynamic coefficients, the differ-
ential equations governing the motion are fundamentally nonilinear. This
permits an explanation of certain types of motion which have been observed
experimentally and which have been explainable previously only with the
assumption of nonlinear aerodynamic characteristics.

INTRODUCTION

As the performance and appearance of modern aircraft, missiles, and
rockets have come to resemble those of projectiles, it has been recognized
that there is a need for a unified theory of motion which includes in a
common language those special features of projectile motion familiar to
ballisticians and those features of airplane motion familiar to aerody-
namicists. ©Several researchers have sought to fulfill this need, the most
noteworghy contributions being those of Nicolaides (ref. 1) and Charters
(ref. 2).

While the kinematic aspects of the problem have been successfully
united in these contributions, the aerodynamic aspects still reflect the
prior interests of aerodynamicists accustomed to the motions of winged
vehicles. Winged vehicles, of course, generally have preferred modes of
transverse motion which deviate only slightly from fixed reference planes,
and this has led the aerodynamicist to view those motions as proJjections
in such planes. This concept has been carried over into the unified theory
and the purpose here will be to show that it leads to errors when used to
represent the aerodynamic forces and moments acting on a vehicle that has
no preferred plane of transverse motion., Then it will be shown by adapting
an older concept, namely the use of planes that rotate with the resultant
angle~of-attack vector (refs. 3 and 4), that these errors can be avoided
and a more correct representation of the forces and moments can be easily



formulated. Finally, results of the revised formulation will be incorpo-
rated in the equations governing the motion of bodies of revolution and a
discussion will be given of the types of motion made explainable by the
changes.

SYMBOLS
Cm pitching-moment coefficient, pltchlggzmoment
Cmap rate of change of Magnus pitching-moment coefficient about
an gxis in the plane of b with respect to a and b;
_é_EE ; a = £l El ; b=a at éi
da db/agso’ OV 2V T T TPV T W
b-o
. normal force
Cy normal-force coefficient, &
CNab rate of change of Magnus normal-force coefficient normal
to the plane of b with respect to a and b;
P\ L LB Bl _, @ &
da db/ /g0 v’v’ vV’ v
b-o0
CNq’Cmq rate of change of normal-force and pitching-moment coeffi-
1
cients with pitching velocity parameter %7 R
J g
0ql/V/ g0 \Oal/V/gso
CN@’Cma rate of change of normal-force and pitching-moment coeffi-
cients with angle of attack; < > < >
oa q»o a0
CN&’Cmd rate of change of normal-force and pitching-moment coeffi-
cients with time rate of change of angle-of-attack
parameter éi ; —§9E%> < BCm >
Vo7 \0&L/ Vg 0" \O&L/ VG o
Cy(o),Ccp(o) normal-force coefficient in the plane of ¢ and pitching-
moment coefficient about an axis normal to the plane
of o

CylLo),Cp(Lo) normal-force coefficient in a plane normal to the plane of
o and pitching-moment coefficient about an axis in the
plane of o
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X,Y,%

side force

QS

side-force coefficient,

_CN

moment of inertia about an axis normal to the axis of
symmetry and passing through the center of gravity

aerodynamic coupling term (eq. (34%))

reference length

components of angular velocity about Xx,y,z axes
effective spin rate, @ - i

dynamic pressure, %-pV2

reference area

time

components of velocity vector V along Xx,y,Z
flight velocity

velocity normal to body axis of symmetry

nonrolling orthogonal axes with origin at body center of
gravity (fig. 1)

orthogonal axes with directions fixed in space and origin
at body center of gravity (fig. 1)

angle of attack (eq. (1))
angle of sideslip (eq. (1))
damping ratio (eq. (30))
angle of pitch (fig. 1)

angular displacement of plane containing o from xy
plane (fig. 1)

alr density
resultant angle of attack (fig. 1)

roll angle (fig. 1)



s angle of yaw (fig. 1)
w circular frequency
Wn undamped natural circular frequency (eq. (30))
. o 2
(), () 4l af0)
at at2
( )1 initial value
( )a asymptotic value
ANATLYSIS

The purpose of the following analysis i1s to show that an error exists
in the accepted practice of writing the aerodynamic forces and moments
that act on a body of revolution during pitching and yawing motion. To
show this clearly, it is desirable to eliminate as many extraneous consid-
erations as possible. Thus, the following conditions are imposed:

(1) The vehicle's center of gravity traverses a straight path.

(2) The vehicle's forward velocity, as measured at its center
of gravity, is constant in magnitude.

(3) The vehicle's effective rolling rate is small enough that
Magnus forces and moments may be considered to be negligible.
(This condition is relaxed in a later section.)

These conditions are easy to visualize if the vehicle is considered
to be a wind-tunnel model mounted on a bearing which permits the model to
pitch and yaw, and to roll at a slow rate.

Coordinate System

Figure 1 shows the system of axes generally used in the analysis of
bodies with rotational symmetry. Two sets of orthogonal axes are shown
whose origins lie at the center of gravity: The XYZ axes have fixed
directions in space while the xyz axes pitch and yaw with the body
through the angles 6 and Y. The y axis is constrained to lie in the
XY plane, however, so that the angular position of the body in space is
not completely specified., This is permissible for bodies with sufficient
roll symmetry because the angle @ affects the aerodynamic forces acting
on the body only in its time rate of change.

AT MO o



Jl OV

«

The velocity vector orientation angles « and B, defined according
to standard NASA notation as

tan o = %, sin B = % (1)

are equal to the space orientation angles 6 and -y for the case under
consideration for which the path of the center of gravity is a straight
line. Two other orientation angles will also be used; the resultant angle
of attack o, and the angle A between the plane containing o and the
Xy plane. These angles are defined as

N
sin o = Al
v (2)
tan A = &
v

where it is to be noted that o is taken as always positive. The velocity
ccmponents agre

u=YVecos &@cos B=Vcos o
v=Vsin B =V sin o cos A (3)
w=Vesin « cos B =V sin o sin A
Then
<
sin2¢ = sin2B + sin®a cos3p
tan A = sin a cot B
} (%)
tan a = tan ¢ sin A
sin B = sin o cos A

which reduce, for small values of o and B, to

g =~Na? + p2
A= tan-l<%>
B > (5)
a = g sin A
B = ocos A J




Finally, the components of angular velocity about the xyz axes are
gilven by

P = é - & sin 6
q=6 ) (6)

V cos 6

=
1

which reduce, for small angles, to

p=<b~9r
q=6 (7
r o=

Customary Practice

First, the customary method of writing the forces and moments corre-
sponding to a pitching and yawing motion will be reviewed to show in what
sense it is incorrect. Consider that the body executes a motion about its
center of gravity consisting of arbitrary variations in both o« and B.
Then the customary procedure is first to observe the motion as it appears
in the plane containing o and to write the forces and moments corre-
sponding to that motion as though it alone existed. Thus, by analogy
with a planar motion one would write for Cg

Cy, = - alpy - _a\;;_,_ @Nq + CNd,> (8)

Likewlse, observing the motion in the B plane, and using the properties
of symmetry for a body of revolution, one would write

CY = - BCN& - ‘%_l <CNq + CNd,> (9)

For use in equations of motion it is convenient to transfer these coef-
ficients to axes in and normal to the plane of the resultant angle of
attack. The transformation equations are

Cy(o)

CN(_L g)

- Cz sin A - Cy cos A
(10)

- Cz cos N + Cy sin A

s

U OYw >
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Inserting equations (8) and (9) in (10) and using the relations (5) yields

= ol
Cy(o) = ofy, + < <ch + cNa>
(11)
= KZ
CN(_L o) = = CNq + CN@)
A similar procedure for the pitching moment yields
= 01
Cp(o) = oCp, + 7 \Cmg + cma>
(12)
_ KZ
Cm(_L U) = V (Cmq + Cma‘>

It may be verified by referring, for example, to references 1, 2, and 5
that equations (11) and (12) are indeed the force and moment coefflclents
that would be used in the equations of motion appropriate to the specified
conditions (uniform rectilinear motion, Magnus forces neglected).

Now, to see that equations (11) and (12) are incorrect, consider the
case of purely circular motion, ¢ = constant. To demonstrate the point
completely, let us also specify that A e constant and that the body
spin rate @ equal N. The latter specification, @ = %, ensures that the
body does not spin with respect to the stream crossflow velocity, so that
Magnus forces, rather than being small, can be said to be identically
zero.t Then, with both o and A constant, a completely steady motion
exists in the sense that every point on the body experiences a normal flow
velocity that is invariant with time. Because the stability derivatives
Crg, and Cpmy are by definition the responses to an accelerated uniform
normal flow, it is recognized that for steady circular motion all evidence
of these terms must vanish in equations (11) and (12). Observe that
CNg and Cmg vanish from the expressions in the plane of the resultant
angle of attack since ¢ = 0 but they do not vanish from the expressions
for force and moment normal to the plane of the resultant angle of attack.
Hence, equations (11) and (12) cannot be correct.

New Formulation

Having shown that the customary method of writing the aerodynamic
forces and moments yields incorrect results in at least one limiting case,

IThe accepted practlce is incorrect on this point also. See section
entitled, "Magnus Forces."



let us now investigate the procedure more closely. Iet o and N vary
arbitrarily with time and consider the velocities normal to the body axis
of symmetry induced by these variations. 1In the ¢ plane the normal
velocity is composed of two components; one due to the resultant angle of
attack, Vo, and one due to the rotation of the body about an axis normal
to the o plane, -0x. Hence, at body station x in the o plane

W—\([i)-=c-%c— (13)

The dimensionless acceleration of the normal flow is therefore

(o) - ol _ gxi (1k)

V2 v yva

In equation (14) the term EXZ/V2 may be discarded since it yields a
force proportional to pitching acceleration (CNQ) which is in phase with
and usually negligible compared to inertial terms in the equations of
motion. The term 6Z/V, however, is of the same order as 6X/V, and
must be retained; observe that 6Z/V is uniform along the body x axis
and hence will lead to a normal force proportional to Cpg. The term
6X/V, on the other hand, leads to a normal force proportional to CNq-

As a result of these flows, there is a normal-force coefficient in the

plane of o, Cy(o), and a pitching-moment coefficient about an axis normal
to the plane of g, Cp(o), which can be written as

il

<CNq + CNd> (15a)

(;mq + Cmi) (150)

Now consider the flow in the direction normal to the o plane. The
velocity normal to the body axis of symmetry is2

<fa

Cy(o) = oCp, +

o0

<la-

Cp(o) = oCp, +

W(io) _ . A N A
v x v'tan on X5 (16)
This normal flow varies linearly with x, and hence can only yield a
force proportional to CNq- The normal-force coefficient normal to the
o plane and the pitching-moment coefficient about an axis in the o
plane are therefore

2There is ignored here a small normal flow variation across the body
diameter. The quantity neglected is, however, antisymmetric with respect
to the diameter and hence should yield neither a force normal to the o
plane nor a pitching moment about an axis in the o plane.

Ul OV
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cylto) = o &L oy, (172)
Culbo) = o AL o (170)

Equations (15) and (17) are the new results, which are to be compared
with the previous results, equations (11) and (12). It is immediately
evident from inspection of equations (15) and (17) that, unlike the
previous results, they reduce properly for circular motion since CN&
and Cm& do not appear in the expressions for force and moment normal to
the ¢ plane.

Let us now attempt to discover where the error occurs in the previous
analysis, First, transfer the new results for the force coefficients,
equations (15a) and (17a) to the o plane by means of

Cz = - Cy(o) sin N - Cy(La) cos A (18)

Inserting equations (15a) and (172) in (18) gives

- - g si oGl g - oM
Cy, o sin A Cy - 5 sin M (CNq + CNd) o S cos A Chg (19)
which becomes, by use of equations (5),
- J 6Ly - L{ePasapp)) .
Cz Lhig = 5§ g - 7 —&E—J—B%é ng, (20)

On comparison of this result with the corresponding one obtained earlier,
equation (8), it is seen that the results agree in the terms containing

CNg and Cp,, but disagree in the term containing Cng- Therefore, consider
the component of normal flow velocity in the o« plane that leads to a
uniform normal acceleration. This component is due to the uniform normal
velocity oV in the ¢ plane. It is

Wv—ﬁa—) = o sin A (21)

Hence the uniform normal acceleration in the o plane is

-

WV9) = & sin N + oA cos A = a (22)
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Examine the significance of the second term, oM cos A. It accounts for
the fact that the o plane is turning at a rate A. Discounting inter-
ference effects, however, the fact that the o plane turns has no bearing
on the force in the o plane, and likewise must have no bearing on the
projection of that force in the @ plane, other than through the factor,
sin M. That is, the acceleration force in the « plane is .

- (51/V) sin A Cng, as given in equations (19) and (20), not - (a1/V) Cng
as given by equation (8). The error in equation (8) is introduced when
one fails to recognize that part of the normal acceleration as viewed in
the @ plane is not involved in the development of an aerodynamic force.
Again consider steady circular motion, o = constant, ¢ = N = constant.
There is still a uniform normal acceleration in the a plane, now due
entirely to the turning of the o plane. The flow at the body is actually
completely steady, however, so that the Cpy contribution to the total
force coefficient must be zero. It is clear, therefore, that no force
contribution should be attributed to the term oA cos A.

It remains to discuss a point which has not been considered, either
in the former method or the present development. In both methods it is
assumed that the forces in a plane can be written as though no motion
exists in another plane; that is, that no interactions occur between flow
fields. There is no a priori reason for assuming this; the hope is, of
course, that such interactions are negligibly small. It should be noted
that the interactions referred to need not entirely depend for their
existence on the presence of viscous effects. In fact, components due to
potential flow may exist; if so, they can be analyzed and such an analysis
may lead to useful results.® In a later section a simple experiment is also
suggested for investigating the magnitude of interactions.

Magnus Forces

The accepted practice of writing the Magnus forces can be criticized
on two counts: First, it is subject to the same sort of error already
shown to exist in the forces due to the normal flow; that is, by consid-
ering projections of the motion as they appear in fixed planes one inad-
vertently introduces a spurious acceleration force. ©Second, in the
accepted practice it 1s said that Magnus forces are identically zero when
p, the component of the vehicle's angular velocity about the axis of
symmetry, is zero. But now consider again circular motion in which the
vehicle spins at a rate ® = N. The angular velocity p is not neces-
sarily zero, but Magnus forces are identically zero because the vehicle
does not spin with respect to the crossflow velocity. The point is, of

SFor example, with the use of steady potential flow theory, the
antisymmetric component of flow normal to the o¢ plane mentioned in
footnote 2 can be shown to cause a small force to exist in the o plane.




U o e

11

course, that it is the spin rate relative to the crossflow, P - X, rather
than p, that is the significant parameter in determing the Magnus forces.

The way to avoid the errors is therefore clear: The first error is
avoided by writing the forces directly in the plane of and normal to the
plane of the resultant angle of attack. The second error is avoided by
recognizing that Magnus forces are generated by the effective rotation of
the body with respect to the crossflow velocity, that is, by use of ® - A
instead of p. This procedure gives for the Magnus force coefficients
which are to be added to equations (15a) and (17a)

exte) = - o 3 (§ - ) oy (23)
e(Lo) = o (%z‘ - 2\\%—> Chipg, *+ @Vl‘ - b{%‘) <CNPq * CNPOL>

Similarly, the Magnus moment coefficients to be added to equations (15b)
and (1Tb) become

Cn(o) = - UM_/@- YRNCH
v P
vV \ v/ q (24)
Cm( _LO') = g <EE..V?‘ - );I:L UZ <EE 7\Z> <Cqu + CmPCL>

The subscript P rather than p is used in the Magnus coefficients to
indicate clearly that the derivative is to be taken with respect to the
effective spin rate, ® - A. Thus, P = ¢ - A, and, for example

32¢y,
CFOTED

Now, compare equations (24) for the Magnus moment coefficients with
the expressions used in current practice (ef. ref. 2, for rectilinear
motion). The latter expressions are

%Z b1
C - Y. .
m(a) o v <§m + C >

Cp(Lo)

(26)

It

BL & pL .
o 7 Cmpa + T v Cmpq + Cmpq
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Tt is seen that equation (26) has an extraneous term Cp g in Cm(o).

The more significant difference, however, is the use of P (= @ - K) in
place of p. The difference can be made explicit by writing P for
small angles as

pep-L [aa - ap(L - 02)} (27)

o2

For rapid spin rates, such as those for spinning shells, the second term
can be negligibly small in comparison with p. Also, for planar motion

in either the o or the B plane the second term is identically =zerc.
Hence, in these three cases, no significant error is introduced by the use
of p rather than P for the spin rate. In general, however, the second
term can be as large or larger than p, and its neglect would be Justi-
fiable in individual cases only after a careful analysis of relative
orders of magnitude.

DISCUSSION

Slgnificance of New Formulation

In order to examine the significance of the analysis in the preceding
sections, consider now the motion of a nonspinning body whlch is free to
piteh and yaw. By a nonspinning body is meant here that @ . As
usually written, the equations of motion in the coordinates « and B
would then be

IE = C»),S‘L(oocmOL + 2 (Omg + Cmd)}
i . (28)
8 = Qsz[ﬁcmOL + %Z— Cmg + Cm@>:|

where the equations have been linearized on the basis that a,B,d,é are
small and that their squares and products may be neglected. These equa-
tions transform, in o,A coordinates, to

QSZ{O’Cma + 'gvl. <Cmq + Cmc.(,>j'

KZ
QS < <?mq + Cm%>

(¢ - )

(29)
T(oN + 268)

I
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The solution of equations (28) is

€ =v€oe-§wnt sin(wt + 7¢) (30)

where

m
i

a or B

Jei? + & (4 - tuney)?

€O=
C
%2:-—?——1(1'.QSI
I
_ _ (Cmg + Cmg) g2
fup = - T 57
Ye = tan'H(. 25 .>
W= w1 - £2

As a result of the harmonic solution (30) for both « and B, the
motion when plotted in «,B coordinates consists of lines, circles, or
ellipses, dependent only on the initial conditions. Since the o« and B
motions have identical periods and damping factors, the type of motion
determined by the initial conditions (lines, circles, or ellipses) is
incapable of degenerating into either of the other two types, but must
exist for all finite time.

Now consider the equations of motion in the o¢,A\ coordinates corre-
sponding to the new formulation. The inertia terms given in equations (29)

will be retained; the aerodyn@mic terms, however, are given by equations
(15b), (1Tb), and (24) with ¢ = 0.

1) : ALY

AL AL Ry
ol oy, - o AL 1N
A [U v ‘Mg T O Cmpy - YT Cmpy + Cmpg

1l

I(5 - oh2)

(31)

I(oN + 250

Il
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In both equations the third term on the right-hand side is in phase with
the second inertia term, and hence can generally be neglected by comparison.
In this case the equations become

(5 - %) = Qsz[ocmcJL + 5\11_2- Cmg + Cmaﬂ
(32)
I(cx + 26\) = QS o Z\l- Cmg - Cme>
These equations transform in a,B coordinates to
5 - o o ,on(wdrod) By (Bd-ab }
TIa QSl[aCma + 57 Cmq 5 SR Cmg, - 2 1 52 CmPCL
. BB + ao s - al a@ - ap ]
Ip QSZ(Ble + ﬁ_ < Y- v \GE T o2 Cmp,,
(33)

An important point should be noted here; whereas the equations of
motion as usually written are linear in «,p coordinates (eqs. (28)),
the equations of motion as formulated in this report (egs. (32) and (33))
are inherently nonlinear and no closed solution corresponding to equa-
tion (30) is possible.

A first integral of the second of equations (32) may be cbtained if
it 1s multiplied by o:

. -kt
A= g (3L)
where
= 1.2
k = - (Cmg - Cmpy) QS22
I \

Substituting equation (34) in the first of equations (32) gives

G+ 2upd + w20 = & o-2kt (35)

where ¢ and wn carry the same definition given previously.

*
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The stability of the motion as given by the solution of equation (35)
is determined by the signs of both Cmq - CmPOL and Cmq + Cmg; 1if either
term is positive the motion is unstable.®# A case of particular interest
is that for which Cmg = Cmp  8nd Cmg + Omg < O. Equations (34) and (35)
then become

e (36)
o + 28wno + wp?o = %; (37)

Several interesting features of the motion can be deduced without
actually solving equation (37):

(1) If C =0 then A = 0 from equation (36) and the solution
of equation (37) is given by equation (30) with 7¢
having the same value for both & and B. Then the
motion is planar, and when plotted in «,B coordinates,
appears as a line.

(2) 1f ¢ % 0, then because of the energy dissipation term
28wy in equation (37), as t-o, 82620, o»0g = NC/lp,
A>wp. Since a = o sin A, B = o cos A, then
-0y = Og sin wpt, BBy = 0y cos Wpt, and the final
motion plotted in «,B coordinates is circular. This
motion is given by the solution (30) only with the
conditions ag = Bg, 7¢ = 7§ + 90°, and the restriction
that the motion is completely undamped; that is, { =0.

(3) If the energy dissipation term in equation (37) is
zero, equations (36) and (37) transform into equa-
tions (28) with Cmg + Cmg, = O. The solution is
then equation (30) with zero exponential, and the
resulting motion in the o, plane, with the proper
initial conditions, is elliptical. Then if the
energy dissipation term in equation (37) is not zero
but sufficiently small, with the proper initial condi-
tions the solution of equations (36) and (37) must
also be approximately elliptical in the «,B plane,
damping finally to the circular motion given by the
asymptotic values oy and Bg.

4These stability criteria apply only to the case of uniform rectilinear
motion being considered. In the general case, in which transverse motion
of the center of gravity and changes in forward speed are permitted, the
stability is influenced in addition by the vehicle's lift-curve slope and
drag coefficient.
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It can be seen, then, that the equations of motion, as usually
formulated, yield motions dependent only on initial conditions, whereas
a more correct formulation provides a mechanism by means of which the
motion can degenerate to the circular state. This is true even though
the aerodynamic terms are linear functions of their respective variables.
These results are of particular interest because degeneration of motion
to the circular state has been observed recently in ballistic range firings
(see ref. 6), and attempts to explain the phenomenon (ref. T), by means
of the usual formulation of the equations, have been successful only
through the inclusion of aerodynamic nonlinearities in the angles and
angular velocities.

One further interesting deduction can be made from consideration of
the general equations (34) and (35); that is, the general probability of
precessional motion. To see this, consider first the equations as usually
written, equations (29). Note that equations (29), because their form is
identical to equations (32), can be expressed in the forms (34) and (35)
with k replaced by 2{w,. This corresponds to the condition Cme = -Cms.,
and the solution is given by equation (30). Then since o2 = a2 + B2,

02 = e'gcwnt[@OZSing(um + Yq) + Boosin®(wt + 7B)J

Substitution into equation (34) eliminates the exponential time dependency
of A giving

\ C
A=
aoZsin®(wt + 7q) + Boosin®(wt + 7p)

That is, N is a periodic function of time. Integration of A over a
cyele of o ylelds a constant, w, for the average value of A per cycle
of o. But 2w is the circular frequency of o, so that o completes
precisely two cycles in the time AN completes one revolution. Thus, with
® = 0, the solution of the equations of motion as usually written (and
with llnear aerodynamlcs) precludes the existence of precessional motion,
a well-known result.

Now consider the case CmPOL # - Cpg- By analogy with the solution of

a linear second-order differential equation, the period of o obtained
from the solution of equation (35) will be relatively independent of both
{ and k for most practical values of these constants. The exponential
decay rate of o will no longer cancel that for N in equation (34),
however, so that the average value of A per cycle of ¢ will change
from cycle to cycle, thus resulting in a motion which will precess.

Figures 2(a), 2(b), and 2(c) show motions computed from equations (34)
and (35); the constants used in the computations are given in table I.

In figure 2(a), the value of CmP(l 1s negative and equal to Cmq and as

U oW
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a result the motion degenerates to a circle as previously described. In
figure 2(b), CmP is positive and of the same order of magnitude as

Cmg; note that the motion precesses slightly. In figure 2(e), Cmp, 1s
positive and perhaps an order of magnitude larger than Cmq and, as can
be seen, causes an initially large precession. The value of CmPa in
figure 2(c) is probably unrealistically large, however; for values of
CmP likely to be encountered in practice the precessional motion is
more likely to resemble that of figure 2(b).

Suggested Experiment

As has been mentioned, the analysis given here, while it corrects an
error made in previous analyses, still contains with those analyses an
unexamined assumption; namely, that the forces acting in a plane due to
motion in that plane are unaffected by motion in another plane. An exper-
iment is proposed below for investigating the validity of this assumption.

Consider first a body undergoing circular motion, and, as before,
let the spin rate @ be equal to % and let A be constant Then
Magnus forces are identically zero and the motion i1s completely steady.
The normal velocities are W/V = ¢ = constant din the plane of o and
W/V = oﬁx/V = Kx normal to the plane of o0, where K 1is a constant.
These normal velocities can be simulated in the wind tunnel with a
staticnary model. The normal velocity in the o plane is reproduced
simply by placing the model at an angle of attack equal to o¢. The normal
velocity in the plane normal to the ¢ plane is simulated for small o
by having the model's axis of symmetry curved in that plane so that the
free-stream velocity component normal to the axis varies linearly with x.
Then the effect of motion in the direction normal to the o plane on
forces in the ¢ plane would be inferred from differences between forces
in the ¢ plane measured with the curved model and those measured at the
same angle of attack with a model having no curvature. Conversely, the
effect of motion in the o plane on forces in the plane normal to the o
plane would be inferred from differences between forces in the latter
plane measured with the curved model at angle of attack o¢ and at zero
angle of attack.

Consider next an unsteady motion. Let the body undergo a nearly
circular elliptical motion in which again ¢ = A= constant. Then again
Magnus foreces are zero but the motion is unsteady because ¢ varies with
time, Observe that during this motion ¢ varies periodically about a
constant inclination. Hence the normal velocity in the plane of ¢ 1is
W/V=o0- 0x/V with o= g5 + a cos wt. Normal to the plane of ¢ the
normal velocity is W/V = oo(Ax/V) = so long as o, >> a. The foregoing
normal velocities can again be 51mulated in the wind tunnel if the curved
model is mounted on a dynamic balance. The normal velocity in the o

plane 1s reproduced by placing the model at angle of attack o, and causing
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it to oscillate with amplitude a. The model's curvature is in the plane
normal to the plane of ¢ and again simulates the linear variation in

x of normal velocity in that plane. Observe that to approximate an
elliptical motion the body must complete, two oscillations in the time A
completes one revolution. Hence, W = 2N, a compatibility condition that
relates the model's reduced frequency, angle of attack, and curvature.

As bvefore, the effect of motion normal to the o plane on forces in the

o plane would be inferred from differences between oscillatory forces

in the ¢ plane measured with the curved model and those measured at the
same angle of attack, frequency, and amplitude of oscillation with a model
having no curvature. The effect of unsteady motion in the o plane on
forces in the plane normal to the ¢ plane would be inferred from differ-
ences between forces in the latter plane measured with the curved model
first oscillating in the ¢ plane at mean angle of attack o5 and then
stationary at that angle of attack.

CONCLUDING REMARKS

The foregoing analysis has shown that significant errors exist in
the accepted practice of writing the aerodynamic forces and moments on a
body of revolution during combined pitching and yawing motion. A more
correct formulation has been presented which shows that even with linear
aerodynamic coefficients the differential equations governing the motion
are fundamentally nonlinear., This permits an explanation of a wider class
of motions than has been previously considered possible under the restric-
tion of linear aerodynamics. In particular, the degeneration of motion
to the circular state, which has been observed experimentally, is explain-
able under the revised theory without the necessity of introducing non-
linear aerodynamics.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Jan. 14, 1960
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TABLE I.- CONSTANTS USED IN THE COMPUTATIONS

. k C

Figure ¢ peﬁnéec per éec per éec
2(a) |0.055 120 0 1.32
2(b) .055 120 27.8 1.32
2(c) .031 120 k1.6 5.26

n oMo >
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Figure 2.- Pitching and yawing motion of a nonspinning nonplunging body.
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Figure 2.- Continued.
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a , degrees

_4 O
B, degrees

(C) CmPCL ~ -10 Cmq

Figure 2,- Concluded.
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